3.3.97 \(\int \frac {x^{9/2}}{\sqrt {a x^2+b x^5}} \, dx\) [297]

Optimal. Leaf size=65 \[ \frac {\sqrt {x} \sqrt {a x^2+b x^5}}{3 b}-\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} x^{5/2}}{\sqrt {a x^2+b x^5}}\right )}{3 b^{3/2}} \]

[Out]

-1/3*a*arctanh(x^(5/2)*b^(1/2)/(b*x^5+a*x^2)^(1/2))/b^(3/2)+1/3*x^(1/2)*(b*x^5+a*x^2)^(1/2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2049, 2054, 212} \begin {gather*} \frac {\sqrt {x} \sqrt {a x^2+b x^5}}{3 b}-\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} x^{5/2}}{\sqrt {a x^2+b x^5}}\right )}{3 b^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(9/2)/Sqrt[a*x^2 + b*x^5],x]

[Out]

(Sqrt[x]*Sqrt[a*x^2 + b*x^5])/(3*b) - (a*ArcTanh[(Sqrt[b]*x^(5/2))/Sqrt[a*x^2 + b*x^5]])/(3*b^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2049

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n +
1)*((a*x^j + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^(n - j)*((m + j*p - n + j + 1)/(b*(m + n*p + 1))
), Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j
, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p + 1 - n + j, 0] && NeQ[m + n*p + 1, 0]

Rule 2054

Int[(x_)^(m_.)/Sqrt[(a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[-2/(n - j), Subst[Int[1/(1 - a*x^2
), x], x, x^(j/2)/Sqrt[a*x^j + b*x^n]], x] /; FreeQ[{a, b, j, n}, x] && EqQ[m, j/2 - 1] && NeQ[n, j]

Rubi steps

\begin {align*} \int \frac {x^{9/2}}{\sqrt {a x^2+b x^5}} \, dx &=\frac {\sqrt {x} \sqrt {a x^2+b x^5}}{3 b}-\frac {a \int \frac {x^{3/2}}{\sqrt {a x^2+b x^5}} \, dx}{2 b}\\ &=\frac {\sqrt {x} \sqrt {a x^2+b x^5}}{3 b}-\frac {a \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x^{5/2}}{\sqrt {a x^2+b x^5}}\right )}{3 b}\\ &=\frac {\sqrt {x} \sqrt {a x^2+b x^5}}{3 b}-\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} x^{5/2}}{\sqrt {a x^2+b x^5}}\right )}{3 b^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 81, normalized size = 1.25 \begin {gather*} \frac {\sqrt {b} x^{5/2} \left (a+b x^3\right )-a x \sqrt {a+b x^3} \tanh ^{-1}\left (\frac {\sqrt {a+b x^3}}{\sqrt {b} x^{3/2}}\right )}{3 b^{3/2} \sqrt {x^2 \left (a+b x^3\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(9/2)/Sqrt[a*x^2 + b*x^5],x]

[Out]

(Sqrt[b]*x^(5/2)*(a + b*x^3) - a*x*Sqrt[a + b*x^3]*ArcTanh[Sqrt[a + b*x^3]/(Sqrt[b]*x^(3/2))])/(3*b^(3/2)*Sqrt
[x^2*(a + b*x^3)])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 0.58, size = 3347, normalized size = 51.49

method result size
risch \(\text {Expression too large to display}\) \(1035\)
default \(\text {Expression too large to display}\) \(3347\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(9/2)/(b*x^5+a*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3/(b*x^5+a*x^2)^(1/2)*x^(3/2)*(b*x^3+a)/b^3*(6*I*3^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(
1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3
^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)
-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))
^(1/2))*a*b^2*x^2-6*I*3^(1/2)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*
b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(
-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x
+(-a*b^2)^(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3)
)^(1/2))*a*b^2*x^2-12*I*3^(1/2)*(-a*b^2)^(1/3)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)
*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b
^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+
I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a*b*
x+12*I*3^(1/2)*(-a*b^2)^(1/3)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*
b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(
-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x
+(-a*b^2)^(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3)
)^(1/2))*a*b*x+6*I*3^(1/2)*(-a*b^2)^(2/3)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*
3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(
1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(
1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a-6*I*3^(
1/2)*(-a*b^2)^(2/3)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)
+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1
/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^
(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a
-6*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(
1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2
))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*
3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a*b^2*x^2+6*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(
-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3
)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*Ellipti
cPi((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3
)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a*b^2*x^2+12*(-a*b^2)^(1/3)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(
1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^
2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*
EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3
^(1/2))/(I*3^(1/2)-3))^(1/2))*a*b*x-12*(-a*b^2)^(1/3)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3))
)^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2
)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^(1/2)-3)*
x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+
I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a*b*x+I*(x*(b*x^3+a))^(1/2)*3^(1/2)*(1/b^2*x*(-b*x+(-a*b^2)^(1/3))*(I*3^(1/2)
*(-a*b^2)^(1/3)+2*b*x+(-a*b^2)^(1/3))*(I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3)))^(1/2)*b^2*x-6*(-a*b^2)^
(2/3)*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)+2*b*x+(-a*b^2
)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-a*b^2)^(1/3)-2*b*x-(-a*b^2)^(1/3))/(-1+I*3^(
1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2),(
(I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*a+6*(-a*b^2)^(2/3)*(-(I*3^(1/2)-3)*x*b/(-1+I*
3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((I*3^(1/...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^(9/2)/sqrt(b*x^5 + a*x^2), x)

________________________________________________________________________________________

Fricas [A]
time = 2.03, size = 148, normalized size = 2.28 \begin {gather*} \left [\frac {a \sqrt {b} \log \left (-8 \, b^{2} x^{6} - 8 \, a b x^{3} + 4 \, \sqrt {b x^{5} + a x^{2}} {\left (2 \, b x^{3} + a\right )} \sqrt {b} \sqrt {x} - a^{2}\right ) + 4 \, \sqrt {b x^{5} + a x^{2}} b \sqrt {x}}{12 \, b^{2}}, \frac {a \sqrt {-b} \arctan \left (\frac {2 \, \sqrt {b x^{5} + a x^{2}} \sqrt {-b} \sqrt {x}}{2 \, b x^{3} + a}\right ) + 2 \, \sqrt {b x^{5} + a x^{2}} b \sqrt {x}}{6 \, b^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/12*(a*sqrt(b)*log(-8*b^2*x^6 - 8*a*b*x^3 + 4*sqrt(b*x^5 + a*x^2)*(2*b*x^3 + a)*sqrt(b)*sqrt(x) - a^2) + 4*s
qrt(b*x^5 + a*x^2)*b*sqrt(x))/b^2, 1/6*(a*sqrt(-b)*arctan(2*sqrt(b*x^5 + a*x^2)*sqrt(-b)*sqrt(x)/(2*b*x^3 + a)
) + 2*sqrt(b*x^5 + a*x^2)*b*sqrt(x))/b^2]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{\frac {9}{2}}}{\sqrt {x^{2} \left (a + b x^{3}\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(9/2)/(b*x**5+a*x**2)**(1/2),x)

[Out]

Integral(x**(9/2)/sqrt(x**2*(a + b*x**3)), x)

________________________________________________________________________________________

Giac [A]
time = 0.68, size = 52, normalized size = 0.80 \begin {gather*} \frac {\sqrt {b x^{3} + a} x^{\frac {3}{2}}}{3 \, b \mathrm {sgn}\left (x\right )} + \frac {a \log \left ({\left | -\sqrt {b} x^{\frac {3}{2}} + \sqrt {b x^{3} + a} \right |}\right )}{3 \, b^{\frac {3}{2}} \mathrm {sgn}\left (x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="giac")

[Out]

1/3*sqrt(b*x^3 + a)*x^(3/2)/(b*sgn(x)) + 1/3*a*log(abs(-sqrt(b)*x^(3/2) + sqrt(b*x^3 + a)))/(b^(3/2)*sgn(x))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {x^{9/2}}{\sqrt {b\,x^5+a\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(9/2)/(a*x^2 + b*x^5)^(1/2),x)

[Out]

int(x^(9/2)/(a*x^2 + b*x^5)^(1/2), x)

________________________________________________________________________________________